Image Segmentation for Uneven Lighting Images using Adaptive Thresholding and Dynamic Window based on Incremental Window Growing Approach

نویسندگان

  • Rashmi Saini
  • Maitreyee Dutta
چکیده

This paper proposes a novel method to address the problem of segmentation, for uneven lighting images. Though there are many segmentation methods, but most of them are based on either the fixed window method or window merging technique. Limitation of such methods is that, initial size of window is selected manually and segmentation accuracy greatly depends upon the proper choice of initial window size. In the proposed work, problem of uneven illumination condition has been addressed using dynamic window growing approach. The proposed algorithm is based on an incremental window growing approach using entropy based selection criteria. The window thus fixed by the selection criteria are considered as sub-images and each sub-images has been segmented by using minimum standard deviation difference based thresholding to improve the segmentation result. The result of the experiments show that the proposed method can deal with higher number of segmentation problem and improve the overall performance for uneven lighting image segmentation. General Terms Thresholding, window size, image binarization, entropy, standard deviation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy the...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

A New Window Selection for Local Image Thresholding under Uneven Illuminations

Image thresholding is one of the most powerful techniques for image segmentation, but it is not always satisfactory in applications under uneven illuminations. Adaptive image thresholding is used to find the optimal window for solving the illumination problem. In this paper, a novel window selection method for adaptive local thresholding is proposed. Based on simulated annealing, the proposed a...

متن کامل

Comparative Study and Image Analysis of Local Adaptive Thresholding Techniques

Thresholding is a simple but effective technique for image segmentation. In this paper, a general locally adaptive thresholding methods using neighborhood processing is presented. Local adaptive techniques are more effective in eliminating both uneven lighting disturbance, noise and ghost objects. In order to demonstrate the effectiveness, locally adaptive thresholding methods namely Niblack, S...

متن کامل

Document Analysis And Classification Based On Passing Window

In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012